Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.209
Filtrar
1.
Biotech Histochem ; 99(3): 134-146, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38563051

RESUMO

We investigated the possible ameliorative effects of nobiletin (NBL) against methotrexate (MTX)-induced hepatorenal toxicity in rats. Twenty-eight Wistar albino rats were randomly divided into four groups, namely: Control; MTX (administered 20 mg/kg MTX); MTX+NBL (administered 20 mg/kg MTX and 10 mg/kg NBL per day); and NBL (administered 10 mg/kg/day NBL). Histopathological, immunohistochemical and biochemical analyses were performed on the kidney and liver tissues of rats at the end of the study. MTX caused renal toxicity, as indicated by increases in malondialdehyde (MDA) and caspase-3, as well as decreases in reduced glutathione (GSH), glucose-6-phosphate dehydrogenase (G6PD), glutathione peroxidase (GPx), catalase (CAT) and B-cell lymphoma-2 (Bcl-2). MTX also caused hepatotoxicity, as indicated by increases in 8-hydroxy-2'-deoxyguanosine (8-OHdG), tumor necrosis factor alpha (TNF-α), MDA and caspase-3 and decrease in interleukin 10 (IL-10), GSH, total antioxidant capacity, GPx, G6PD, CAT and Bcl-2. MTX caused histopathological changes in kidney and liver tissues indicating tissue and cellular damage. Administration of NBL concurrently with methotrexate reduced oxidative stress, inflammatory and apoptotic signs, and prevented kidney and liver damage caused by methotrexate. We consider NBL has attenuating and ameliorating effects on methotrexate-induced hepatorenal toxicity.


Assuntos
Flavonas , Rim , Fígado , Metotrexato , Ratos Wistar , Animais , Metotrexato/toxicidade , Flavonas/farmacologia , Ratos , Rim/efeitos dos fármacos , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico
2.
Int Immunopharmacol ; 130: 111709, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38377857

RESUMO

Methotrexate (MTX), a chemotherapeutic antimetabolite, has been linked to cognitive impairment in cancer patients. MTX-induced metabolic pathway disruption may result in decreased antioxidant activity and increased oxidative stress, influencing hippocampal neurogenesis and microglial activation. Nuclear factor-kappa B (NF-κB), an oxidative stress byproduct, has been linked to MTX toxicity via the activation of NLRP3 inflammasome signaling. Macrophage activation and polarization plays an important role in tissue injury. This differentiation may be mediated via either the Toll-like receptor 4 (TLR4) or NLRP3 inflammasome. Interestingly, Canagliflozin (CANA), a sodium-glucose cotransporter 2 (SGLT2) inhibitor has been recently reported to exert anti-inflammatory effects by modulating macrophage polarization balance. This study aimed to investigate CANA's protective effect against MTX-induced cognitive impairment, highlighting the possible involvement of TLR4/ NF-κB crosstalk with NLRP3 inflammasome activation and macrophage polarization. Forty-eight Male Wistar rats were divided into 4 groups; (1) received saline orally for 30 days and intravenously on days 8 and 15. (2) received Canagliflozin (CANA; 20 mg/kg/day; p.o.) for 30 days. (3) received MTX (75 mg/kg, i.v.) on day 8 and 15, then they were injected with four i.p. injections of leucovorin (LCV): the first dose was 6 mg/ kg after 18 h, and the remaining doses were 3 mg/kg after 26, 42, and 50 h of MTX administration. (4) received MTX and LCV as in group 3 in addition to CANA as in group 2. MTX-treated rats showed cognitive deficits in spatial and learning memory as evidenced in the novel object recognition and Morris water maze tests. MTX exerted an oxidative effect which was evident by the increase in MDA and decline in SOD, GSH and GPx. Moreover, it exerted an inflammatory effect via elevated caspase-1, IL-1ß and IL-8. CANA treatment restored cognitive ability, reduced MTX-induced oxidative stress and neuroinflammation via attenuation of TLR4/NF-κB/NLRP3 signaling, and rebalanced macrophage polarization by promoting the M2 phenotype. Hence, targeting molecular mechanisms manipulating macrophage polarization may offer novel neuroprotective strategies for preventing or treating MTX-induced immune modulation and its detrimental sequel.


Assuntos
Disfunção Cognitiva , Fármacos Neuroprotetores , Humanos , Masculino , Ratos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Metotrexato/toxicidade , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Receptor 4 Toll-Like/metabolismo , Canagliflozina , Ratos Wistar , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Macrófagos/metabolismo
3.
Basic Clin Pharmacol Toxicol ; 134(5): 695-703, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38388876

RESUMO

Methotrexate (MTX) is a widely used medication for various cancers, yet its use is associated with adverse effects on organs, notably the lungs. Cannabidiol (CBD), known for its antioxidant and anti-inflammatory properties, was investigated for its potential protective effects against MTX-induced lung injury. Thirty-two female Wistar Albino rats were divided into four groups: control, MTX (single 20 mg/kg intraperitoneal dose), MTX + CBD (single 20 mg/kg MTX with 0.1 ml of 5 mg/kg CBD for 7 days intraperitoneally) and CBD only (for 7 days). Lung tissues were analysed using histopathological, immunohistochemical and PCR methods after the study. Histopathological assessment of the MTX group revealed lung lesions like hyperemia, edema, inflammatory cell infiltration and epithelial cell loss. Immunohistochemical examination showed significant increases in Cas-3, tumour necrosis factor-alpha (TNF-α) and nuclear factor-kappa B (NF-κB) expressions. PCR analysis indicated elevated expressions of apoptotic peptidase activating factor 1 (Apaf 1), glucose-regulated protein 78 (GRP 78), CCAAT-enhancer-binding protein homologous protein (CHOP) and cytochrome C (Cyt C), along with reduced B-cell lymphoma-2 (BCL 2) expressions in the MTX group, though not statistically significant. Remarkably, CBD treatment reversed these findings. This study highlights CBD's potential in mitigating MTX-induced lung damage, suggesting its therapeutic promise.


Assuntos
Canabidiol , Metotrexato , Feminino , Ratos , Animais , Metotrexato/toxicidade , Canabidiol/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ratos Wistar , Pulmão/metabolismo , Estresse Oxidativo
4.
Int Immunopharmacol ; 129: 111566, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38364740

RESUMO

Studies have identified Coenzyme Q10 (CoQ10) as a promising agent in improving idiopathic male infertility; however, its role in chemically or environmentally induced testicular dysfunction is not well-established. We investigated the potential of CoQ10 to attenuate methotrexate (MTX)-induced testicular damage and to identify molecular targets of CoQ10 effects. Wistar rats received a single intraperitoneal dose of 20 mg/kg MTX on the fifth day of the 10-day experimental protocol. 100 mg/kg CoQ10 was given orally daily for ten days, alone or combined with MTX. The testes of MTX-treated animals showed thickened tunica albuginea, distortion of seminiferous tubules with a marked reduction of germinal lining, a few primary spermatocytes with no spermatozoa, apoptotic cells, congested sub-capsular and interstitial blood vessels, and interstitial edema. Reduction of reproductive hormones and increased oxidative, inflammatory, and apoptotic biomarkers levels were also seen in the MTX-treated rats. CoQ10 + MTX-treated rats were protected against MTX-induced testicular histological changes and showed improvement in testosterone, luteinizing-, and follicle-stimulating hormone serum levels compared to the MTX group. The testes of the CoQ10 + MTX-treated rats showed reduced malondialdehyde, myloperoxidase, tumor necrosis factor -α, interleukin-6 and -1ß and Bax: Bcl2 ratio and enhanced glutathione, and catalase compared to MTX alone. CoQ10 enhanced MTX-induced downregulation of Nrf2 and PPAR-γ signaling and modulated its downstream targets, the inducible nitric oxide synthase, NF-κB, Bax, and Bcl2. In conclusion, CoQ10 targeted the Nrf2-PPAR-γ signaling loop and its downstream pathways, mitigating MTX-induced oxidative stress-related damages and alleviating the testicular dysfunction MTX caused. Our data suggest Nrf2-PPAR-γ signaling as a potential therapeutic target in testicular toxicity, where oxidative stress, inflammation, and apoptosis trigger damage.


Assuntos
Metotrexato , Doenças Testiculares , Ubiquinona/análogos & derivados , Humanos , Ratos , Masculino , Animais , Metotrexato/toxicidade , Ratos Wistar , Fator 2 Relacionado a NF-E2/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Proteína X Associada a bcl-2/metabolismo , Estresse Oxidativo , Doenças Testiculares/induzido quimicamente , Doenças Testiculares/tratamento farmacológico , Doenças Testiculares/prevenção & controle , Antioxidantes/farmacologia
5.
Drug Des Devel Ther ; 18: 453-462, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38374827

RESUMO

Introduction: Methotrexate (MTX) is one of the most widely used drugs in cancer chemotherapy and treating rheumatoid arthritis. The hepatotoxicity of MTX is one of its major side effects. Roflumilast (ROF) has been recognized to have antioxidant and anti-inflammatory activity in in-vivo and in-vitro models. The present study aimed to explore the potential protective effects of roflumilast against MTX-induced liver toxicity in male Wistar rats. Methods: High dose of 5 mg/kg for 4 consecutive days subcutaneous (S.C) injection of methotrexate for induction of acute liver injury. A total of 24 Wistar rats, rats were used in four different groups. The NS injections were given S.C to the control group once a day for 4 consecutive days. SC injections of MTX (5 mg/kg) were given to the MTX group daily for four days. At 5 mg/kg once daily for four days, the roflumilast group was given daily oral roflumilast. An injection of MTX and oral roflumilast were given to the MTX + roflumilast group once daily for four consecutive days. Results: Administration of high dose MTX (5 mg/kg) today 4 produced a significant decrease in hepatic glutathione (GSH) levels and a significant increase in ALT and AST liver enzymes, hepatic malondialdehyde (MDA), tumor suppressor protein (p53), interleukin 6, interleukin 1 levels compared to the control group. Treatment with roflumilast for 4 days significantly attenuated unfavorable changes in these parameters. According to histopathological findings, Roflumilast significantly reduced MTX-induced inflammation and degeneration in the liver. In conclusion, the findings indicate that roflumilast may have a potential therapeutic benefit in treating rats with MTX-induced liver toxicity by mitigating its effects. Purpose: The aim of this study is to investigate the potential protective effects of roflumilast against MTX-induced liver toxicity in Wistar rats.


Assuntos
Aminopiridinas , Benzamidas , Doença Hepática Induzida por Substâncias e Drogas , Metotrexato , Ratos , Masculino , Animais , Metotrexato/toxicidade , Ratos Wistar , Estresse Oxidativo , Peroxidação de Lipídeos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Glutationa/metabolismo , Fígado , Ciclopropanos
6.
Arch Toxicol ; 98(3): 943-956, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38285066

RESUMO

Angiogenesis is a key process in embryonic development, a disruption of this process can lead to severe developmental defects, such as limb malformations. The identification of molecular perturbations representative of antiangiogenesis in zebrafish embryo (ZFE) may guide the assessment of developmental toxicity from an endpoint- to a mechanism-based approach, thereby improving the extrapolation of findings to humans. Thus, the aim of the study was to discover molecular changes characteristic of antiangiogenesis and developmental toxicity. We exposed ZFEs to two antiangiogenic drugs (SU4312, sorafenib) and two developmental toxicants (methotrexate, rotenone) with putative antiangiogenic action. Molecular changes were measured by performing untargeted metabolomics in single embryos. The metabolome response was accompanied by the occurrence of morphological alterations. Two distinct metabolic effect patterns were observed. The first pattern comprised common effects of two specific angiogenesis inhibitors and the known teratogen methotrexate, strongly suggesting a shared mode of action of antiangiogenesis and developmental toxicity. The second pattern involved joint effects of methotrexate and rotenone, likely related to disturbances in energy metabolism. The metabolites of the first pattern, such as phosphatidylserines, pterines, retinol, or coenzyme Q precursors, represented potential links to antiangiogenesis and related developmental toxicity. The metabolic effect pattern can contribute to biomarker identification for a mechanism-based toxicological testing.


Assuntos
Inibidores da Angiogênese , Peixe-Zebra , Animais , Humanos , Inibidores da Angiogênese/toxicidade , Inibidores da Angiogênese/metabolismo , Angiogênese , Metotrexato/toxicidade , Rotenona/farmacologia , Embrião não Mamífero , Metabolômica
7.
BMC Pulm Med ; 24(1): 45, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245672

RESUMO

Inflammation and oxidative stress are recognized as two primary causes of lung damage induced by methotrexate, a drug used in the treatment of cancer and immunological diseases. This drug triggers the generation of oxidants, leading to lung injury. Given the antioxidant and anti-inflammatory effects of high-intensity intermittent training (HIIT), our aim was to evaluate the therapeutic potential of HIIT in mitigating methotrexate-induced lung damage in rats. Seventy male Wistar rats were randomly divided into five groups: CTL (Control), HIIT (High-intensity intermittent training), ALI (Acute Lung Injury), HIIT+ALI (pretreated with HIIT), and ALI + HIIT (treated with HIIT).HIIT sessions were conducted for 8 weeks. At the end of the study, assessments were made on malondialdehyde, total antioxidant capacity (TAC), superoxide dismutase (SOD), glutathione peroxidase (Gpx), myeloperoxidase (MPO), interleukin 10 (IL-10), tumor necrosis factor-alpha (TNF-α), gene expression of T-bet, GATA3, FOXP3, lung wet/dry weight ratio, pulmonary capillary permeability, apoptosis (Caspase-3), and histopathological indices.Methotrexate administration resulted in increased levels of TNF-α, MPO, GATA3, caspase-3, and pulmonary edema indices, while reducing the levels of TAC, SOD, Gpx, IL-10, T-bet, and FOXP3. Pretreatment and treatment with HIIT reduced the levels of oxidant and inflammatory factors, pulmonary edema, and other histopathological indicators. Concurrently, HIIT increased the levels of antioxidant and anti-inflammatory factors.


Assuntos
Lesão Pulmonar Aguda , Treinamento Intervalado de Alta Intensidade , Edema Pulmonar , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Interleucina-10/metabolismo , Metotrexato/toxicidade , Caspase 3/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ratos Wistar , Lesão Pulmonar Aguda/terapia , Lesão Pulmonar Aguda/tratamento farmacológico , Estresse Oxidativo , Pulmão/patologia , Glutationa Peroxidase/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Superóxido Dismutase/metabolismo , Fatores de Transcrição Forkhead/metabolismo
8.
Int Immunopharmacol ; 127: 111298, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38070469

RESUMO

Methotrexate (MTX) has long manifested therapeutic efficacy in several neoplastic and autoimmune disorders. However, MTX-associated intestinal toxicity restricts the continuation of treatment. Nifuroxazide (NIF) is an oral antibiotic approved for gastrointestinal infections as an effective antidiarrheal agent with a high safety profile. The current study was designed to explore the potential efficacy of NIF in alleviating intestinal toxicity associated with MTX chemotherapy with the elucidation of the proposed molecular mechanisms. Rats were administered NIF (50 mg/kg; p.o.) for ten days. On day five, a single i.p. injection of MTX (20 mg/kg) was given to induce intestinal intoxication. At the end of the experiment, duodenal tissue samples were isolated for biochemical, Western blotting, immunohistochemical (IHC), and histopathological analysis via H&E, PSA, and Alcian blue stains. NIF showed antioxidant enteroprotective effects against MTX intestinal intoxication through enhanced expression of the redox-sensitive signals of PPAR-γ, SIRT1, and Nrf2 estimated by IHC. Moreover, NIF down-regulated the pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6), NF-κB protein expression, and the phosphorylation of JAK1/STAT3 proteins, leading to mitigation of intestinal inflammation. In accordance, the histological investigation revealed that NIF ameliorated the intestinal pathological changes, preserved the goblet cells, and reduced the inflammatory cells infiltration. Therefore, NIF could be a promising candidate for adjunctive therapy with MTX to mitigate the associated intestinal injury and increase its tolerability.


Assuntos
Hidroxibenzoatos , Metotrexato , NF-kappa B , Nitrofuranos , Ratos , Animais , NF-kappa B/metabolismo , Metotrexato/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , PPAR gama/metabolismo , Sirtuína 1/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo
9.
Liver Int ; 44(3): 691-705, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38082504

RESUMO

BACKGROUND AND AIM: Hepatotoxicity is a well-defined reaction to methotrexate (MTX), a drug commonly used for the treatment of rheumatoid arthritis and various tumours. We sought to elucidate the mechanism underlying MTX-induced hepatotoxicity and establish a potentially effective intervention strategy. METHODS: We administered MTX to liver cells and mice and assessed hepatotoxicity by cell viability assay and hepatic pathological changes. We determined ferroptosis and ferritinophagy by detecting ferroptosis-related markers and autophagic degradation of ferritin heavy chain 1 (FTH1). RESULTS: We have shown that hepatocytes treated with MTX undergo ferroptosis, and this process can be attenuated by ferroptosis inhibitors. Interestingly, NCOA4-mediated ferritinophagy was found to be involved in MTX-induced ferroptosis, which was demonstrated by the relief of ferroptosis through the inhibition of autophagy or knockdown of Ncoa4. Furthermore, MTX treatment resulted in the elevation of high-mobility group box 1 (HMGB1) expression. The depletion of Hmgb1 in hepatocytes considerably alleviated MTX-induced hepatotoxicity by limiting autophagy and the subsequent autophagy-dependent ferroptosis. It is noteworthy that glycyrrhizic acid (GA), a precise inhibitor of HMGB1, effectively suppressed autophagy, ferroptosis and hepatotoxicity caused by MTX. CONCLUSION: Our study shows the significant roles of autophagy-dependent ferroptosis and HMGB1 in MTX-induced hepatotoxicity. It emphasizes that the inhibition of ferritinophagy and HMGB1 may have potential as a therapeutic approach for preventing and treating MTX-induced liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Ferroptose , Proteína HMGB1 , Animais , Camundongos , Autofagia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Metotrexato/toxicidade , Metotrexato/uso terapêutico
10.
Immunopharmacol Immunotoxicol ; 46(1): 11-19, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37493389

RESUMO

OBJECTIVES: Methotrexate (MTX) is an antimetabolite agent widely used to manage a variety of tumors and autoimmune diseases. Nonetheless, MTX-induced intestinal intoxication is a serious adverse effect limiting its clinical utility. Inflammation and oxidative stress are possible mechanisms for MTX-induced intestinal toxicity. Vinpocetine (VNP) is a derivative of the alkaloid vincamine with potent anti-inflammatory and antioxidant effects. The current study investigated the protective intestinal impact of VNP in attenuating MTX-induced intestinal intoxication in rats. MATERIALS AND METHODS: VNP was administered orally in a dose of 20 mg/kg, while MTX was injected intraperitoneal in a dose of 20 mg/kg. RESULTS: VNP administration attenuated drastic histological changes induced by MTX and preserved both normal villus and crypt histology. VNP significantly attenuated oxidative injury by upregulating intestinal Nrf2 and HO-1 expression. VNP attenuated inflammation by reducing MPO, NO2-, TNF-α, and IL-1ß levels mediated by downregulating NF-κB, NDAPH-oxidase, IRF3, p-JAK-1, and p-STAT-3 expressions. Moreover, VNP potently counteracted intestinal necroptosis by effectively downregulating RIPK1, RIPK3, MLKL, and caspase-8 proteins. CONCLUSION: Therefore, VNP may represent a promising approach that can attenuate intestinal toxicity in patients receiving MTX.


Assuntos
Metotrexato , NF-kappa B , Alcaloides de Vinca , Humanos , Ratos , Animais , NF-kappa B/metabolismo , Metotrexato/toxicidade , Estresse Oxidativo , Inflamação , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/farmacologia , Janus Quinase 1/metabolismo , Proteínas Quinases/metabolismo
11.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1875-1888, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37773524

RESUMO

The objective of this study was to investigate whether the neurotoxic effects caused by methotrexate (MTX), a frequently used chemotherapy drug, could be improved by administering Spirulina platensis (SP) and/or thymoquinone (TQ). Seven groups of seven rats were assigned randomly for duration of 21 days. The groups consisted of a control group that was given saline only. The second group was given 500 mg/kg of SP orally; the third group was given 10 mg/kg of TQ orally. The fourth group was given a single IP dose of 20 mg/kg of MTX on the 15th day of the experiment. The fifth group was given both SP and MTX, the sixth group was given both TQ and MTX, and the seventh group was given SP, TQ, and MTX. After MTX exposure, the study found that AChE inhibition, depletion of glutathione, and increased levels of MDA occurred. MTX also decreased the activity of SOD and CAT, as well as the levels of inflammatory mediators such as IL-1, IL-6, and tumor necrosis factor-α. MTX induced apoptosis in brain tissue. However, when MTX was combined with either SP or TQ, the harmful effects on the body were significantly reduced. This combination treatment resulted in a faster return to normal levels of biochemical, oxidative markers, inflammatory responses, and cell death. In conclusion, supplementation with SP or TQ could potentially alleviate MTX-induced neuronal injury, likely due to their antioxidant, anti-inflammatory, and anti-apoptotic effects.


Assuntos
Antioxidantes , Benzoquinonas , Spirulina , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Metotrexato/toxicidade , Spirulina/metabolismo , Ratos Wistar , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Estresse Oxidativo
12.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 371-380, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37450013

RESUMO

Methotrexate (MTX), as a folic acid antagonist, is an effective drug in treating a wide range of malignancies and autoimmune diseases. However, the clinical use of MTX has been limited due to its side effects, the most common of which is hepatotoxicity. In this study, rats were randomly divided into six groups: three treatment groups received methotrexate and different doses of astaxanthin (AX) for 14 days. At the end of the study, blood samples were collected to determine serum levels of ALT, AST, ALP, and LDH. Also, liver tissues were isolated to evaluate antioxidant enzymes and markers of oxidative stress, histopathological damage, and expression of NF-E2-related transcription factor (Nrf2) and Heme oxygenase-1 (HO-1) genes. The results showed that administration of MTX significantly increased the levels of ALT, AST, ALP, and LDH in the blood, markers of oxidative stress, and histopathological damage in liver tissue and significantly reduced the levels of antioxidant enzymes and the expression of Nrf2 and HO-1 genes. On the other hand, treatment with AX decreased blood levels of ALT, AST, ALP, and LDH and oxidative stress markers and remarkably raises the activity of antioxidant enzymes and expression of Nrf2 and HO-1 genes in liver tissue. In addition, histopathological lesions were improved with AX administration. The findings of this study indicated that AX may be useful for the prevention of MTX-induced hepatotoxicity by improving oxidative and inflammatory changes.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Metotrexato , Ratos , Animais , Metotrexato/toxicidade , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ratos Wistar , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fígado , Estresse Oxidativo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
13.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 357-369, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37450014

RESUMO

Disrupted spermatogenesis and testicular injury are among the devastating outcomes of methotrexate. A major contributor to methotrexate-induced testiculopathy is oxidative damage which triggers apoptosis and altered autophagy responses. Eicosapentaenoic acid ethyl ester (EPA-E) is an antihyperlipidemic derivative of omega-3 fatty acids that exhibited affinity to peroxisome proliferator-activated receptor-γ (PPAR-γ) that possesses both antioxidant and autophagy modulating properties. This is an exploratory study aiming at assessing the effectiveness of EPA-E to alleviate testicular damage induced by methotrexate. The specific exploratory hypothesis of this experiment is: EPA-E administration for 1 week to methotrexate-treated rats reduces testicular damage compared to control rats. As a secondary outcome, we were interested in identifying the implicated mechanism that mediates the action of EPA-E. In adult male Wistar rats, testiculopathy was achieved by a single methotrexate injection (20 mg/kg, ip). Rats received vehicle, EPA-E (0.3 g/kg/day, po) alone or with selective PPAR-γ antagonist (bisphenol A diglycidyl ether, BADGE) at 30 mg/kg/day, ip for 1 week. EPA-E recuperated methotrexate-attenuated serum total testosterone while reduced testicular inflammation and oxidative stress, restoring superoxide dismutase (SOD) while reducing malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Methotrexate-induced testicular apoptosis (caspase-3 and p53) was suppressed upon EPA-E treatment. Besides, EPA-E curbed methotrexate-induced abnormal autophagy by downregulating LC3A/B and beclin-1. Interestingly, BADGE-coadministration reversed EPA-E beneficial actions. Collectively, our findings suggest PPAR-γ role in EPA-E-mediated mitigation of methotrexate-evoked testiculopathy via suppression of oxidative stress, apoptosis, as well as abnormal autophagy. Furthermore, EPA-E could be used as a preventive therapy for some testiculopathies mediated by oxidative stress.


Assuntos
Ácido Eicosapentaenoico , Metotrexato , Ratos , Masculino , Animais , Metotrexato/toxicidade , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/uso terapêutico , Ratos Wistar , Receptores Ativados por Proliferador de Peroxissomo/farmacologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Estresse Oxidativo
14.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 1071-1079, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37581637

RESUMO

PURPOSE: Lung fibrosis is a heterogeneous lung condition characterized by excessive accumulation of scarred tissue, leading to lung architecture destruction and restricted ventilation. The current work was conducted to examine the probable shielding influence of cinnamic acid against lung fibrosis induced by methotrexate. METHODS: Rats were pre-treated with oral administration of cinnamic acid (50 mg/kg/day) for 14 days, whereas methotrexate (14 mg/kg) was orally given on the 5th and 12th days of the experiment. Pirfenidone (50 mg/kg/day) was used as a standard drug. At the end of the experiment, oxidative parameters (malondialdehyde, myeloperoxidase, nitric oxide, and total glutathione) and inflammatory mediators (tumor necrosis factor-α and interleukin-8), as well as transforming growth factor-ß and collagen content, as fibrosis indicators, were measured in lung tissue. RESULTS: Our results revealed that cinnamic acid, as pirfenidone, effectively prevented the methotrexate-induced overt histopathological damage. This was associated with parallel improvements in oxidative, inflammatory, and fibrotic parameters measured. The outcomes of cinnamic acid administration were more or less the same as those of pirfenidone. In conclusion, pre-treatment with cinnamic acid protects against methotrexate-induced fibrosis, making it a promising prophylactic adjuvant therapy to methotrexate and protecting against its possible induction of lung fibrosis.


Assuntos
Cinamatos , Fibrose Pulmonar , Piridonas , Ratos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/prevenção & controle , Metotrexato/toxicidade , Pulmão , Fibrose
15.
J Biochem Mol Toxicol ; 38(1): e23571, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37927177

RESUMO

Methotrexate (MTX) is an antineoplastic agent and has neurotoxic effects. It exerts its toxic effect on the brain by triggering inflammation and apoptosis. Cannabidiol (CBD) is an agent known for its antioxidant, anti-inflammatory effects in various tissues. The aim of this study is to examine the protective effects of CBD treatment in various brain structures from MTX damage and to evaluate the effect of intracellular pathways involved in apoptosis. Thirty-two adult Wistar Albino female rats were divided into four groups as control, MTX (20 mg/kg intraperitoneally [i.p.]), MTX + CBD (0.1 mL of 5 mg/kg i.p.), and CBD (for 7 days, i.p.). At the end of the experiment, brain tissues collected for biochemical analyses as total oxidant status (TOS), total antioxidant status, oxidative stress index (OSI), histopathological and immunohistochemical analyses as tumor necrosis factor-α (TNF-α), serotonin, mammalian target of rapamycin (mTOR) staining, genetic analyses as caspase-9 (Cas-9), caspase-12 (Cas-12), C/EBP homologous protein (CHOP), and cytochrome-c (Cyt-c) gene expressions. In the histopathological and immunohistochemical evaluation, hyperemia, microhemorrhage, neuronal loss, and significant decreasing expressions of seratonin were observed in the cortex, hippocampus, and cerebellum regions in the MTX group. mTOR, TNF-α, Cas-9, Cas-12, CHOP, and Cyt-c expressions with TOS and OSI levels were increased in the cortex. It was observed that these findings were reversed after CBD application in all regions. MTX triggers neuronal apoptosis via endoplasmic reticulum and mitochondrial stress while destroying serotonergic neurons. The reversal of the pathological changes with CBD treatment proves that it has anti-inflammatory and antiapoptotic activity in brain.


Assuntos
Canabidiol , Metotrexato , Ratos , Animais , Metotrexato/toxicidade , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ratos Wistar , Canabidiol/farmacologia , Doenças Neuroinflamatórias , Fator de Necrose Tumoral alfa/metabolismo , Estresse Oxidativo , Apoptose , Anti-Inflamatórios/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Estresse do Retículo Endoplasmático , Mamíferos/metabolismo
16.
Eur Rev Med Pharmacol Sci ; 27(22): 11103-11108, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38039041

RESUMO

OBJECTIVE: Methotrexate (MTX) is a folic acid antagonist used in chronic inflammatory diseases and various cancer treatments. Although the main mechanism of the toxic effect of MTX is not known, it is stated that it causes oxidative stress and inflammation. Alpha-linolenic acid (ALA) protects against oxidative stress, apoptosis, and inflammation. For this reason, we aimed to find out the useful effect of ALA on MTX-induced nephrotoxicity MATERIALS AND METHODS: The mice were divided into 4 groups randomly. The control group was treated with physiological saline solution; the ALA group was treated with ALA (200 mg/kg) by gavage; MTX-treated group received 20 mg/kg i.p. (intraperitoneal) MTX; and MTX+ALA treated group received 20 mg/kg i.p. MTX and ALA 200 mg/kg by gavage. All of the drugs were performed once a day for 9 days. RESULTS: Alpha-linolenic acid significantly decreased oxidative stress parameters and MTX-induced inflammatory and apoptotic mediators. Furthermore, histopathological examination showed that MTX induced significant edematous damage, and ALA treatment attenuated this damage in renal tissue. CONCLUSIONS: Our results revealed that ALA may be helpful against MTX-induced nephrotoxicity in mice via its antioxidant and anti-inflammatory properties.


Assuntos
Metotrexato , Ácido alfa-Linolênico , Camundongos , Animais , Metotrexato/toxicidade , Ácido alfa-Linolênico/farmacologia , Ácido alfa-Linolênico/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Inflamação/metabolismo , Rim/patologia
17.
Turk J Med Sci ; 53(4): 872-882, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38031943

RESUMO

BACKGROUND: Methotrexate (MTX) is a folic acid antagonist that is widely used to treat osteosarcoma, leukemia, breast cancer, and autoimmune and inflammatory diseases. The most important concerns with MTX are its poor solubility and high toxicity, particularly in liver cells. To enhance its solubility and to minimize its toxicity, we encapsulated MTX in niosomes and investigated its hepatotoxicity mechanisms using genetic biomarkers. METHODS: Niosomes were successfully prepared using a modified thin film method, and the prepared monodisperse smallsized formulation was subsequently characterized. In vitro cytotoxicity studies were performed both in hepatocarcinoma (HEP3G) and healthy liver (AML12) cell lines. Specifically, immunofluorescence assay and evaluation of the expression levels of apoptotic, antioxidant, heat shock protein, and oxidative stress genes were performed. RESULTS: The formulation had a particle size of 117.1 ± 33 nm, a surface charge of -38.41 ± 0.7 mV, and an encapsulation efficiency of 59.7% ± 2.3%. The results showed that the niosomal formulation exhibited significantly higher cytotoxic effects in HEP3G than in AML12. The immunofluorescence and genetic analyses showed that the increased cytotoxicity of niosomes resulted mainly from oxidative stress and slight apoptosis. DISCUSSION: These results demonstrated that niosomal drug delivery systems could be a new potential formulation for minimizing MTX-related hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Lipossomos , Humanos , Metotrexato/toxicidade , Sistemas de Liberação de Medicamentos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Técnicas de Cultura de Células
18.
Tissue Cell ; 85: 102254, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866152

RESUMO

This study investigated the protective activities of pinostrobin (PIN) against methotrexate (MTX)-induced ovarian toxicity. Female rats were administered with PIN (50 mg/kg) for 4 weeks, while MTX was administered from weeks 2-4 of PIN treatment. Serum hormonal profiles, ovarian oxidative stress, inflammatory and apoptotic biomarkers as well as ovarian histomorphometry were evaluated. MTX administration elicited profound deficit in serum progesterone and estrogen (E2) levels, while luteinizing hormone (LH) and follicle stimulating hormone (FSH) were significantly increased. Additionally, MTX administration was associated with significant increases in ovarian malondialdehyde, nitric oxide, NF-кB, TNF-α, IL-6, IL-1ß, iNOS and caspase-3 activity, as well as notable reduction in the activities of glutathione peroxidase, catalase and superoxide dismutase as well as the level of glutathione. Whereas, treatment with PIN significantly decreased serum levels of FSH and LH, as well as ovarian levels of NO, MDA, caspase 3, NF-κB, IL-1ß, IL-6, TNF-α and iNOS. PIN also significantly upregulated GSH, GPx, CAT and SOD in the ovarian tissues as well as increased serum E2 and progesterone levels compared to the MTX group. Furthermore, PIN significantly restored altered ovarian histoarchitecture in the treated group. These findings suggests that PIN exerts protective effects against MTX-triggered ovarian damages.


Assuntos
Antioxidantes , Metotrexato , Ratos , Feminino , Animais , Antioxidantes/farmacologia , Metotrexato/toxicidade , Flavonoides/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/farmacologia , Progesterona/farmacologia , Estresse Oxidativo , Glutationa/metabolismo , Anti-Inflamatórios/farmacologia , NF-kappa B/metabolismo , Hormônio Foliculoestimulante/farmacologia
19.
Cell Biochem Biophys ; 81(4): 717-726, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37656380

RESUMO

Accumulating data confirms that Methotrexate (MTX), a well-known immunosuppressive and anticancer drug, causes nephrotoxicity. Infliximab (INF), the inhibitor of tumor necrosis factor-alpha (TNF-α), was proven to have anti-inflammatory properties. Thus, it may have potential in preventing MTX-induced nephrotoxicity. Therefore, this study aimed to inspect the prospective nephroprotective effect of INF on MTX-induced rat nephrotoxicity through investigating the possible molecular mechanisms, including its interference with different death routes, oxidative stress as well as mitochondrial biogenesis. Rats received an INF intraperitoneal single dose of 7 mg/kg 72 h prior to a single 20 mg/kg MTX injection. MTX nephrotoxicity was demonstrated by significantly increased serum levels of the renal indicators urea and creatinine as well as renal inflammatory markers TNF-α and Interleukin-6 (IL-6) and the renal oxidative stress marker malondialdehyde (MDA), while renal antioxidant enzyme superoxide dismutase (SOD) was significantly decreased compared to control. INF injection prior to MTX markedly reversed these MTX-induced effects. Besides, MTX impaired mitochondrial biogenesis, while INF attenuated this impairment, as indicated by increased expression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). Finally, MTX triggered apoptotic and autophagic cascades in renal tissues as evidenced by reduced anti-apoptotic Bcl-2 protein expression as well as elevated expression of the pro-apoptotic protein Bax and both key regulators of autophagy; beclin-1 and LC-3, whereas INF pretreatment counteracted these apoptotic and autophagic effects of MTX. Summarily, these results suggest that INF provides protection against MTX-induced nephrotoxicity which could be elucidated by its antioxidant, anti-inflammatory, anti-apoptotic and anti-autophagic effects as well as upregulating mitochondrial biogenesis.


Assuntos
Antioxidantes , Metotrexato , Ratos , Animais , Metotrexato/toxicidade , Antioxidantes/metabolismo , Infliximab/farmacologia , Infliximab/uso terapêutico , Infliximab/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Biogênese de Organelas , Estudos Prospectivos , Rim/metabolismo , Estresse Oxidativo , Anti-Inflamatórios/farmacologia
20.
Toxicol Mech Methods ; 33(9): 755-765, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37537746

RESUMO

Amifostine is used in chemotherapy and radiotherapy as a cytoprotective adjuvant alongside DNA-binding chemotherapeutic agents. It functions by reducing free radicals and detoxifying harmful metabolites. Methotrexate, as an antimetabolite drug has been considered for treating various cancers and autoimmune diseases. However, the cytotoxic effects of methotrexate extend beyond tumor cells to crucial organs, including the heart. This study applied the HUVEC cell line as a reference in vitro model for researching the characteristics of vascular endothelium and cardiotoxicity. The current study aimed to assess amifostine's potential cytoprotective properties against methotrexate-induced cellular damage. Cytotoxicity was measured using the MTT assay. Apoptotic rates were evaluated by Annexin V-FITC/PI staining via flow cytometry. The genoprotective effect of amifostine was determined using the comet assay. Cells were exposed to various amifostine doses (10-200 µg/mL) and methotrexate (2.5 µM) in pretreatment culture condition. Methotrexate at 2.5 µM revealed cytotoxicity, apoptosis, oxidative stress and genotoxicity while highlighting amifostine's cyto/geno protective properties on HUVECs. Amifostine significantly decreased the levels of ROS and LPO while preserving the status of GSH and SOD activity. Furthermore, it inhibited genotoxicity (tail length, %DNA in tail, and tail moment) in the comet assay. Amifostine markedly attenuated methotrexate-induced apoptotic cell death (early and late apoptotic rates). These findings convey that amifostine can operate as a cytoprotectant agent.


Assuntos
Amifostina , Antineoplásicos , Humanos , Amifostina/farmacologia , Amifostina/uso terapêutico , Metotrexato/toxicidade , Células Endoteliais da Veia Umbilical Humana , Estresse Oxidativo , DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA